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1
RUN-TIME OPTIMIZED SHADER PROGRAM

BACKGROUND

This disclosure relates generally to the field of graphics
processing. More particularly, this disclosure relates to tech-
niques for identifying and generating optimized shader pro-
grams for executing applications.

In computer graphics, it is common to represent objects as
triangulated polygons (i.e., triangles). The vertices of tri-
angles may be associated not only with position (i.e., where
in/on an object the vertex resides), but also with other
attributes that may be used to properly render the triangle to
which the vertex is a part. Such attributes may include color at
the vertex point, reflectance of the surface at the vertex, tex-
tures of the surface at the vertex, and the normal of an approxi-
mated curved surface at the location of the vertex. In practice,
avertex may be thought of as a data structure that describes a
point in two-dimensional (2D) or three-dimensional (3D)
space. A collection of vertices (representing triangles), and
information about their interconnectivity, may be used to
model objects.

Modern graphics processing units (GPUs) have general-
ized architectures that permit customized programming
through the use of “shader” programs. A shader program is a
set of instructions that may be used to calculate rendering
effects. In general, there are two principal types of shader
programs: vertex shader programs and fragment shader pro-
grams. Vertex shader programs are run once for each vertex in
a model and are responsible for how the vertex will be dis-
played. Fragment shader programs are run once for every
pixel in every triangle in a model/object and are responsible
for how individual pixels will be displayed. Vertex shader
programs can manipulate properties such as the position,
color, texture coordinates, and lighting characteristics of a
vertex. Fragment shader programs can manipulate various
attributes of individual pixels such as color and translucency
characteristics. Fragment shaders may also be used to apply
lighting values, shadows and specular highlights to a dis-
played object.

For model data to faithfully represent an object, often many
thousands of vertices are required. To produce animation it
may be desirable to have rendering rates of 60 frames per
second (FPS). Consider then a model that has 100,000 verti-
ces. If the desired drawing rate for the object represented by
the model is 60 FPS, a vertex shader program would need to
be executed six million (6,000,000) times per second.

Modern framebuffers (to which GPUs write their output),
are composed of millions of elements (each element repre-
senting a pixel). Often each final frame of GPU rendering will
be the result of compositing multiple fragments (i.e., pixels)
with a blending operation between them. Consider then a
framebuffer that is 2,000-by-1,000 elements in size. If each
pixel is drawn twice (once to render the pixel and another to
perform a blending operation), a fragment shader program
would need to be executed four million (4,000,000) times per
second for each frame. At a rendering rate of 60 FPS, the
fragment shader program would need to be executed two
hundred forty million (240,000,000) times per second.

Because of the extremely high number of executions for
both vertex and fragment shaders during object rendering
operations, it is important to be able to use optimized shader
programs. Unlike programs written for general purpose cen-
tral processing units (CPUs), generalized logic that employs
conditional instructions for potentially unused instructions is
not acceptable (such instructions take to much time to evalu-
ate at the rates presented above). Thus, it would be beneficial
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2

to provide a technique to generate optimized shaders for an
executing application at run-time.

SUMMARY

In one embodiment the invention provides a method to
generate optimized shader programs. The method includes
receiving a designated graphics effect from a client applica-
tion at run-time, automatically identifying one or more shader
program source instructions based on the designated graphics
effect and automatically compiling the identified instructions
to generate a shader program optimized for the designated
graphics effect. Once compiled, the optimized shader pro-
gram may be linked on behalf of the client application and
executed by a programmable graphics processing unit.

In another embodiment the designated graphics effect may
be used to generate a unique identifier. The unique identifier,
in turn, may be used to isolate and select only those shader
program source instructions needed to satisfy the designated
graphics operation. The unique identifier may also be used to
store the optimized shader program for reuse at a later time. In
yet another embodiment, the unique identifier may be used
(once generated and before being used to isolate and select
shader program instructions) to determine if a shader opti-
mized for the designated graphics operation has already been
generated. For example, by using the unique identifier as a
hash or key into a memory cache.

In still another embodiment an optimized shader may be
retrieved from memory, or generated as described herein,
only if the designated graphics operation would require a
substantial change in a shader program already executing. In
another embodiment, the unique identifier may be used as a
mask to selectively identify only those instructions from a
plurality of shader program source instructions, needed to
implement the designated shader operation. The plurality of
shader program source instructions may be instructions mak-
ing up a monolithic shader program (e.g., a vertex or fragment
shader). In one embodiment, the monolithic shader program
may be tagged such that groups of one or more shader pro-
gram instructions correspond to various values of the unique
identifier. Other embodiments of the described methodolo-
gies may be embodied as program code stored on a non-
transitory storage device. Such program code may even be
made part of a computer system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows, in block diagram form, a system in accor-
dance with one embodiment.

FIG. 2 shows, in flowchart form, an operation to generate
optimized shaders in accordance with one embodiment.

FIG. 3 shows, in block diagram form, a functional archi-
tecture for generating optimized shader programs at run-time
in accordance with one embodiment.

FIGS. 4A and 4B show how functional blocks of state-
ments within monolithic shader programs may be tagged in
accordance with one embodiment.

FIG. 5 shows a state vector in accordance with one embodi-
ment.

FIG. 6 shows a key generation operation in accordance
with one embodiment.

FIG. 7 shows, in block diagram form, an illustrative sim-
plified functional diagram of an electronic device incorporat-
ing graphics processing capabilities as disclosed herein.

DETAILED DESCRIPTION

This disclosure pertains to systems, methods, and com-
puter readable media for generating optimized shader pro-



US 9,412,193 B2

3

grams (e.g., vertex and fragment) at run-time. In general,
techniques are disclosed herein for determining when an
executing graphics program (hereinafter, client) issues a com-
mand that, to be carried out, would require a significant
change in the currently executing shader program (hereinat-
ter, shader). When this is detected, the client’s specified
change may be used to identify a minimal set of shader
instructions that can provide the client’s designated effect.
The instructions so identified, may be used to generate a
shader optimized for that effect.

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the inventive concept. As part of
the this description, some structures and devices may be
shown in block diagram form in order to avoid obscuring the
invention. Moreover, the language used in this disclosure has
been principally selected for readability and instructional
purposes, and may not have been selected to delineate or
circumscribe the inventive subject matter, resort to the claims
being necessary to determine such inventive subject matter.
Reference in the specification to “one embodiment” or to “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention, and
multiple references to “one embodiment” or “an embodi-
ment” should not be understood as necessarily all referring to
the same embodiment.

It will be appreciated that in the development of any actual
implementation (as in any development project), numerous
decisions must be made to achieve the developers’ specific
goals (e.g., compliance with system- and business-related
constraints), and that these goals may vary from one imple-
mentation to another. It will also be appreciated that such
development efforts might be complex and time-consuming,
but would nevertheless be a routine undertaking for those of
ordinary skill in the Graphics Processing Unit (GPU) pro-
gram development field having the benefit of this disclosure.

Referring to FIG. 1, system 100 in accordance with one
embodiment allows client 105 to designate specific graphics
effects by issuing calls to middleware 110 (e.g., a library)
through application programming interface (API) 115. At
run-time, middleware 110 generates shader 120 optimized to
perform the designated effect and passes it to graphics hard-
ware 125 via drivers 130. By way of example only, middle-
ware 110 and AP1 115 may support the OpenGL ES 1.1 and/or
2.0 standards.

When executing an individual shader four million (4,000,
000) to two hundred forty million (240,000,000) times per
second, each and every instruction within the shader becomes
significant. For this reason, it has been determined that any
shader that needs to operate at speeds such as these should be
optimized. This means a shader should employ only those
instructions needed to accomplish its specific task and
include no looping or conditional statements.

When a fairly small number of specific tasks need to be
implemented, they are typically hand-optimized. In the case
of libraries or middleware implementations, the number of
tasks can be so large that the development of hand-tailored
shaders becomes impractical, if not impossible. Thus, in the
past the only meaningful way to construct shaders (e.g., ver-
tex and fragment) for these types of implementations has been
to create monolithic shader programs. Monolithic shaders
contain all of the instructions needed to implement all of the
graphic operations that that type of shader is to provide. As a
consequence, monolithic shaders make heavy use of condi-
tional statements. To overcome the problem of conditional
statements, shader programs as disclosed herein tag each
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4

functional block of one or more instructions within the source
code of a monolithic shader. The tags may be used to relate or
tie the instruction(s) within a block to a particular graphics
state. At run-time, the tags may be used to identify only those
instructions needed to provide the client’s specified effect
(i.e., without the use of conditional statements). The identi-
fied instructions, when compiled, constitute a shader opti-
mized for the specified effect.

Referring to FIG. 2, operation 200 in accordance with one
embodiment begins when client 105 calls into middleware
110 through API 115 designating a specific graphics effect
(block 205). The specified effect may be used to generate a
unique identifier or key (block 210). Each key so generated
identifies, or corresponds to, a unique set of shader operations
(a shader). Once generated, the key may be used to determine
if the specified effect would require a significant change to the
currently instantiated shader (block 215). As used herein, an
operation will cause a “significant change™ to a shader if the
operation requires a change in the number or sequence of
instructions the shader would need to execute to perform the
operation. In a lighting effect, for example, changing the color
of'alight from blue to green would not constitute a significant
change as both effects may be achieved by the same number
and sequence of instructions (albeit with different input val-
ues). If, on the other hand, the number of lights provided by a
lighting effect where to change from 1 to 3, to avoid the use of
conditional statements in the shader, the number and
sequence of instructions needed to supply 3 lights would be
different from the number and sequence of instructions
needed to supply 1 light. Such a change would be significant.

Ifthe specified effect does not require a significant change
to the currently instantiated shader (the “NO” prong of block
215), input in accordance with the specified effect may be
supplied to the currently instantiated shader (block 220). As
noted in the example above, one such change could be to
change a lighting effect’s color from blue to green. If the
specified effect would require a significant change to the
currently instantiated shader (the “YES” prong of block 215),
a check may be made to determine if a shader corresponding
to the key generated during block 210 is already available
(block 225). If an optimized shader corresponding to the key
is already available (the “YES” prong of block 225), that
shader may be retrieved (block 230) and processed as dis-
cussed below (block 250). If a shader corresponding to the
key does not already exist or is otherwise unavailable (the
“NO” prong of block 225), the key may be used to identify
one or more instructions from a collection of shader instruc-
tions such as, for example, a tagged monolithic shader (block
235) in accordance with this disclosure. The instructions so
identified may be compiled (block 240), stored for later use
(block 245), linked on behalf of client application 105 and
sent for execution by graphics hardware 125 via drivers 130
(block 250). In one embodiment, compiled shader programs
stored in accordance with block 245 may use the associated
key as a hash value in a memory cache. In this way, acts in
accordance with block 230 need only apply the key generated
in accordance with block 210 to amemory cache to determine
if a prior generated shader is available (e.g., during block
225). If a prior generated shader is available, the memory
cache could, for example, return the compiled shader itself or
a location in memory where the shader may be stored.

Referring to FIG. 3, system 300 illustrates a functional
architecture for generating optimized shader programs at run-
time in accordance with one embodiment. As shown, middle-
ware 110 includes initialization module 305, key generator
module 310, lookup module 315, generator module 320, and
linker module 325. Initialization module 305 retrieves tagged
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monolithic shader file 330 from storage 335, parses it into
structure 340 suitable for use by generator module 320 and
stores that structure in memory 345. Key generator module
310 uses client supplied effect information to generate a key
that uniquely corresponds to the specific effect designated by
client 105. Lookup module 315 uses the key to determine ifan
optimized shader corresponding to the key has already been
generated and stored in memory 345 (e.g., in memory region
350). Generator module 320 uses the key and structure 340
stored in memory 345 to generate and compile a shader opti-
mized for the effect designated by client 105. Generator mod-
ule 320 may also store compiled shader programs in region
350 of memory 345 for later use (e.g., retrieval by lookup
module 315). Linker module 325 links the compiled opti-
mized shader on behalf of client application 105 and passes
optimized shader 120 to graphics hardware 125 via drivers
130.

For embodiments in which middleware 110 and API 115
support a standard such as the OpenGL or OpenGL ES stan-
dards, extended mark-up language (XML) tags may be
assigned to each functional block of one or more instructions
within the source code of a monolithic shader. The tags may
be used to relate or tie the instruction(s) within a block to a
particular OpenGL state and the class object (in an object-
oriented implementation) that handles the particular effect
provided by the instruction(s). Referring to FIG. 4A, structure
400 represents a tagged functional block of instructions
within a monolithic shader program in accordance with one
embodiment. As shown, structure 400 includes one or more
instructions 405, label 410 and attributes 415. It will be rec-
ognized, that block 405 may include other (nested) blocks of
instructions. To see how label 410 and attributes 415 may be
used to tie or associate instructions 405 to a particular
OpenGL ES state as may be implemented in an object-ori-
ented environment effect, consider FIG. 4B. As shown there,
label 420 identifies instruction block 425 as being related to
the texturing property for the class EFFECT (used, for
example, to implement the OpenGL ES effect). Attributes
430 indicate the texturing property is conditional and handled
by the class EFFECT. If the same instructions are used in the
same sequence in multiple locations within file 330, a com-
mon tag may be applied to each such block.

Referring again to FIG. 3, at system start-up initialization
module 305 retrieves monolithic shader program file 330 that
has been tagged as described herein, parses it in accordance
with those tags and stores the (hierarchical) structure 340 in
memory 345. During this process, initialization module may
also assign a unique value to each unique tag within file 330.
As such, each assigned value relates to a single effect. Insome
embodiments, the “value” of each unique state (as repre-
sented my a unique label in file 330) may be “recorded” in a
state vector, where each element in the state vector represents
the state (i.e., on or off, enabled or disabled) corresponding to
atagin file 330/structure 340. Referring to FIG. 5, state vector
500 may include an element or bit value for each unique tag in
file 330/structure 340. As shown here, element (e.g., bit) 505
in state vector 500 may represent the status of the “texturing
enabled” tag 420 which, in turn, represents the status of the
“texturing enabled” effect within system 100 and/or 300.

Key generation in accordance with blocks 210 (FIG. 2) and
module 310 (FIG. 3) for one embodiment is illustrated in F1G.
6. When client 105 calls into middleware 110 through API
115, it can result in one or more values being set within
middleware 110. For example, within effect structure 600.
Values within effect structure 600 may be mapped into input
state vector 605. For those effects in structure 600 that have a
corresponding tag in file 330/structure 340, input state vector
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605 may have a corresponding element (e.g., bit). In one
embodiment, input state vector 605 has the same number of
elements as state vector 500 and the ith element in state vector
500 represents the same effect as does the ith element in input
state vector 605. Because input state vector 605 uniquely
represents the combination of effect values that client 105
may designate, it may also be thought of as a “key” (e.g., an
input key).

In addition to generating input key 605, operations in
accordance with block 310 may determine if the effect speci-
fied by client 105 (as expressed by input state vector 600)
would significantly affect the currently executing shader pro-
gram. In one embodiment, substantial changes to a shadier
may be determined by modifier methods in the classes of the
middleware (i.e., those classes used to implement an adopted
graphics standard such as OpenGL). State vector 605 may
then be thought of as a ledger to record these changes. If the
specified effect would not necessitate a substantial change to
the currently instantiated shader, operations continue as dis-
cussed above regarding block 215. If the client specified input
state vector or key 605 indicates the currently executing
shader would need to be significantly changed, key generator
module 310 passes key 605 to lookup module 315.

Lookup module 315 may use input state vector 605 as a key
into memory 345 to determine if a shader optimized for the
specific effect represented by key 605 has already been gen-
erated. In one embodiment, key 605 may be used as input
(e.g., a hash value) to a memory cache. If key 605 is “in” the
memory cache, what can be returned is the optimized shader
or the address in memory 345 where the optimized shader is
stored (e.g., within region 350), whereafter operations con-
tinue as discussed above with respect to block 315. If no such
shader is found to exist (or is otherwise unavailable), lookup
module 315 may pass key 605 to generator module 320.

Generator module 320 may use key 605 as a mask against
structure 340. In this operation, key 605 may be seen to mask
out (or remove from further consideration) those functional
blocks in file 330 that do not correspond to the effect repre-
sented by the unique pattern of bits in key 605. It may be
recognized that these acts have the effect of removing unnec-
essary instructions from structure 340 (the monolithic
shader). The approach of removing unnecessary instructions
from a monolithic shader to generate an optimized shader, as
opposed to building up an optimized shader by joining
together different blocks of instructions, yields unexpected
benefits. One such benefit is that of substantially reducing the
problem caused by inter-related blocks of instructions.
Another benefit of this approach is that the tagging process
makes it such that the complex process of iteratively parceling
chunks of shading text (e.g., shader source code) into logical
blocks, tagging them, and associating them with logic that
determines if the block should be included or not into a
tractable problem. It thereby subdivides a very complex sys-
tem interaction problem into a set of logical actions that are
manageable.

Once the instructions (and only the instructions) needed to
provide the client’s designated effect have been identified,
generator module 420 may compile them, store a copy thereof
in memory 445 for later use (in accordance with key 605), and
pass the compiled shader (which is now optimized for the
specific effect designated by client 105) to linker module 325.
Linker module 325 may, in turn, link the optimized shader to
client 105 and send the compiled and linked optimized shader
program to graphics hardware 125 through drivers 130 (in
accordance with block 250). In an illustrative embodiment,
the source code for a monolithic shader (e.g., a vertex or
fragment shader) may include 200 to 400 lines. The same
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monolithic shader tagged in accordance with this disclosure
may include 300 to 500 lines. Optimized shaders (e.g., shader
120) may include 1 to 5 instructions, none of which are
conditional.

Referring now to FIG. 7, a simplified functional block
diagram of electronic device 700 incorporating graphics pro-
cessing capabilities as disclosed herein is shown according to
one embodiment. Electronic device 700 may include proces-
sor 705, display 710, device sensors 715 (e.g., proximity
sensor/ambient light sensor), microphone 720, audio/video
codecs 725, speaker 730, communications circuitry 735,
image sensor with associated camera hardware 740, user
interface 745, memory 750, storage device 755, graphics
hardware 760, and communications bus 765.

Processor 705 may be any suitable programmable control
device(s) and may control the operation of many functions,
such as the generation and/or processing of graphics data, as
well as other functions performed by electronic device 700.
Processor 705 may represent one or more processing units
and include special purpose computational hardware. Proces-
sor 705 may also drive display 710 and receive user inputs
from user interface 745. Processors such as the Intel Core® 15
and Intel Core® 17 processors or a Cortex® A8 with the
ARM® v7-A architecture may provide a versatile and robust
programmable control device that may be utilized for carry-
ing out the disclosed techniques. INTEL CORE is a regis-
tered trademark of the Intel Corporation. CORTEX and ARM
are registered trademarks of the ARM Limited Company of
the United Kingdom.) In one embodiment, electronic device
700 may be a workstation or desktop computer system. In
another embodiment, electronic device may be portable such
as a laptop computer, mobile phone, personal data assistant
(PDA), portable digital camera or tablet computer.

Memory 750 may include one or more different types of
storage media used by processor 705 to perform device func-
tions. For example, memory 750 may include memory cache,
read-only memory (ROM), and/or random access memory
(RAM). Graphics hardware 760 may includes special pur-
pose graphics hardware such as a programmable GPU. Com-
munications bus 765 may provide a data transfer path for
transferring data to, from, or between at least storage device
755, memory 750, processor 705, and graphics hardware 760.
User interface 745 may allow a user to interact with electronic
device 700. For example, user interface 745 can take a variety
of forms, such as a button, keypad, dial, a click wheel, key-
board, display screen and/or a touch screen.

Storage device 755 may store media (e.g., image and video
files), computer program instructions or software, preference
information, device profile information, and any other suit-
able data. Storage device 755 may include one more non-
transitory storage mediums including, for example, magnetic
disks (fixed, floppy, and removable) and tape, optical media
such as CD-ROMs and digital video disks (DVDs), and semi-
conductor memory devices such as Electrically Program-
mable Read-Only Memory (EPROM), and Electrically Eras-
able Programmable Read-Only Memory (EEPROM).

Memory 750 and storage 755 may be used to tangibly
retain computer program instructions or code organized into
one or more modules and written in any computer program
language desired. When executed by, for example, processor
705 such computer program code may implement one or
more of the methods described herein.

Various changes in the materials, components, circuit ele-
ments, as well as in the details of the illustrated operational
methods are possible without departing from the scope of the
following claims. For instance, processor 705 may be imple-
mented using two or more program control devices commu-
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nicatively coupled. Each program control device may include
the above-cited processors, special purpose processors such
as graphics processing units and custom designed state
machines that may be embodied in a hardware device such as
an application specific integrated circuits (ASICs) and field
programmable gate array (FPGAs).

Finally, it is to be understood that the above description is
intended to be illustrative, and not restrictive. For example,
the above-described embodiments may be used in combina-
tion with each other. Many other embodiments will be appar-
ent to those of skill in the art upon reviewing the above
description. The scope of the invention therefore should be
determined with reference to the appended claims, along with
the full scope of equivalents to which such claims are entitled.
In the appended claims, the terms “including” and “in which”
are used as the plain-English equivalents of the respective
terms “comprising” and “wherein.”

The invention claimed is:

1. A method to generate optimized shader programs at
run-time, comprising:

receiving a designated graphics effect from an application

at run-time, the designated graphics effect being repre-
sented as a mask including a pattern of bits;
determining a change in a number or a sequence of instruc-
tions of a currently instantiated shader program is
needed to perform the designated graphics effect;
in response to the determined need, determining whether
an optimized shader program capable of performing the
designated graphics effect is stored in memory;

obtaining the optimized shader program from memory
when the optimized shader program is determined to be
in memory;
preparing the optimized shader program when the opti-
mized shader program is not stored in memory, the pre-
paring of the optimized shader program including:

automatically applying the mask to the currently instanti-
ated shader program,

removing shader program source instructions of the cur-

rently instantiated shader program that fail to corre-
spond to the pattern of bits,

designating unremoved shader program source instruc-

tions as one or more identified shader program source
instructions, and

automatically compiling only the one or more identified

shader program source instructions to generate the opti-
mized shader program; and
executing the optimized shader program.

2. The method of claim 1, wherein the one or more identi-
fied shader program source instructions fail to include condi-
tional statements for the designated graphics effect.

3. The method of claim 2, wherein the application of the
mask to the shader program comprises applying the mask to
a tagged representation of a monolithic shader program
stored in memory.

4. The method of claim 1, further comprising storing the
optimized shader program in memory.

5. The method of claim 4, wherein the storing of the opti-
mized shader program in memory comprises storing the opti-
mized shader program in memory based on the pattern of bits
associated with the designated graphics effect.

6. The method of claim 1, wherein the execution of the
optimized shader program comprises linking the optimized
shader program to the application.

7. The method of claim 1, wherein the execution of the
optimized shader program comprises sending the optimized
shader program to a graphics processing unit.
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8. A non-transitory program storage device to generate
optimized shader programs at run-time, comprising program
code to:

receive a designated graphics effect from an application at

run-time, the designated graphics effect being repre-
sented as a mask including a pattern of bits;

determine a change in a number or a sequence of instruc-

tions of a currently instantiated shader program is
needed to perform the designated graphics effect;

in response to the determined need, determine whether an

optimized shader program capable of performing the
designated graphics effect is stored in memory;

obtain the optimized shader program from memory when

the optimized shader program is determined to be stored
in memory;

prepare the optimized shader program when the optimized

shader program is not stored in memory, wherein the

program code to prepare the optimized shader program

includes program code to:

apply the mask to the currently instantiated shader pro-
gram,

remove shader program source instructions of the cur-
rently instantiated shader program that fail to corre-
spond to the pattern of bits,

designate unremoved shader program source instruc-
tions as one or more identified shader program source
instructions, and

compile only the one or more identified shader program
source instructions to generate the optimized shader
program; and

cause the optimized shader program to be executed.

9. The non-transitory program storage device of claim 8,
wherein the one or more identified shader program source
instructions fail to include conditional statements for the des-
ignated graphics effect.

10. The non-transitory program storage device of claim 9,
wherein the program code to apply the mask to the shader
program comprises program code to apply the mask to a
tagged representation of a monolithic shader program stored
in memory.

11. The non-transitory program storage device of claim 8,
further comprising program code to store the optimized
shader program in memory.

12. The non-transitory program storage device of claim 11,
wherein the program code to store the optimized shader pro-
gram in memory comprises program code to store the opti-
mized shader program in memory based on the pattern of bits
associated with the designated graphics effect.

13. The non-transitory program storage device of claim 8,
wherein the program code to cause the optimized shader
program to be executed comprises program code to cause the
optimized shader program to be linked to the application.

14. The non-transitory program storage device of claim 8,
wherein the program code to cause the optimized shader
program to be executed comprises program code to send the
optimized shader program to a graphics processing unit.
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15. A system, comprising:

a programmable graphics processing unit;
memory operatively coupled to the programmable graphics
processing unit; and

a processing unit operatively coupled to the programmable

graphics processing unit and the memory, the processing
unit being adapted to execute program code stored in the
memory to:
receive a designated graphics effect from an application
at run-time, the designated graphics effect being rep-
resented as a mask including a pattern of bits;
determine whether a change in a number or a sequence
of instructions of a currently instantiated shader pro-
gram is needed to perform the designated graphics
effect;
in response to the determined need, determine whether
an optimized shader program capable of performing
the designated graphics effect is stored in the
memory;
obtain the optimized shader program from the memory
when the optimized shader program is determined to
be in the memory;
prepare the optimized shader program when the opti-
mized shader program is not stored in the memory,
wherein the processing unit being adapted to execute
program code stored in the memory to prepare the
optimized shader program includes the processing
unit being adapted to execute program code stored in
the memory to:
apply the mask to the currently instantiated shader
program,
remove shader program source instructions of the cur-
rently instantiated shader program that fail to cor-
respond to the pattern of bits
designate unremoved shader program source instruc-
tions as one or more identified shader program
source instructions, and
compile only the one or more identified shader pro-
gram source instructions to generate the optimized
shader program; and

cause the optimized shader program to be executed by the

programmable graphics processing unit.

16. The system of claim 15, wherein the one or more
identified shader program source instructions fail to include
conditional statements for the designated graphics effect.

17. The system of claim 16, wherein the application of the
mask to the shader program includes the processing unit
being adapted to execute program code stored in the memory
to:

apply the mask to a tagged representation of a monolithic

shader program stored in the memory.

18. The system of claim 15, further comprising storing the
optimized shader program in the memory.

19. The system of claim 18, wherein the storing of the
optimized shader program in the memory comprises storing
the optimized shader program in the memory based on the
pattern of bits associated with the designated graphics effect.

20. The system of claim 15, wherein the execution of the
optimized shader program comprises linking the optimized
shader program to the application.
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